Untuk perbaikan ponsel, diharapkan kita dapat menggunakan oscilloscope
untuk mengetahui kerusakan ponsel secara lebih akurat, selain dari
pengalaman yang kita miliki dalam mengatasi kerusakan pada ponsel.
Jadi ada baiknya kita lebih mengenal sedikit atau banyak masalah oscilloscope ini.
Dalam thread ini kita akan membahas lebih lanjut mengenai instrument pengukuran ini.
ada 12 materi yg akan dibahas satu persatu..
Yang pertama adalah :
1. PENGENALAN OSCILLOSCOPE
Osiloskop adalah alat ukur besaran listrik yang dapat memetakan sinyal
listrik. Pada kebanyakan aplikasi, grafik yang ditampilkan
memperlihatkan bagaimana sinyal berubah terhadap waktu. Seperti yang
bisa anda lihat pada gambar di bawah ini ditunjukkan bahwa pada sumbu
vertikal(Y) merepresentasikan tegangan V, pada sumbu horisontal(X)
menunjukkan besaran waktu t.
Layar osiloskop dibagi atas 8 kotak skala besar dalam arah vertikal dan
10 kotak dalam arah horizontal. Tiap kotak dibuat skala yang lebih
kecil. Sejumlah tombol pada osiloskop digunakan untuk mengubah nilai
skala-skala tersebut.
Osiloskop 'Dual Trace' dapat memperagakan dua buah sinyal sekaligus pada
saat yang sama. Cara ini biasanya digunakan untuk melihat bentuk
sinyal pada dua tempat yang berbeda dalam suatu rangkaian elektronik.
Kadang-kadang sinyal osiloskop juga dinyatakan dengan 3 dimensi. Sumbu
vertikal(Y) merepresentasikan tegangan V dan sumbu horisontal(X)
menunjukkan besaran waktu t. Tambahan sumbu Z merepresentasikan
intensitas tampilan osiloskop. Tetapi bagian ini biasanya diabaikan
karena tidak dibutuhkan dalam pengukuran.
Wujud/bangun dari osiloskop mirip-mirip sebuah pesawat televisi dengan
beberapa tombol pengatur. kecuali terdapat garis-garis(grid) pada
layarnya.
Osiloskop analog Goodwill seri 622 G
Apa Saja yang dapat diukur dengan Osiloskop?
Osiloskop sangat penting untuk analisa rangkaian elektronik. Osiloskop
penting bagi para montir alat-alat listrik, para teknisi dan peneliti
pada bidang elektronika dan sains karena dengan osiloskop kita dapat
mengetahui besaran-besaran listrik dari gejala-gejala fisis yang
dihasilkan oleh sebuah transducer. Para teknisi otomotif juga memerlukan
alat ini untuk mengukur getaran/vibrasi pada sebuah mesin. Jadi dengan
osiloskop kita dapat menampilkan sinyal-sinyal listrik yang berkaitan
dengan waktu. Dan banyak sekali teknologi yang berhubungan dengan
sinyal-sinyal tersebut.
Contoh beberapa kegunaan osiloskop :
• Mengukur besar tegangan listrik dan hubungannya terhadap waktu.
• Mengukur frekuensi sinyal yang berosilasi.
• Mengecek jalannya suatu sinyal pada sebuah rangakaian listrik.
• Membedakan arus AC dengan arus DC.
• Mengecek noise pada sebuah rangkaian listrik dan hubungannya terhadap waktu.
SETTING DEFAULT OSCILLOSCOPE
Tombol Umum:
On/Off : Untuk menghidupkan/mematikan Oscilloscope
Ilumination : Untuk menyalakan lampu latar.
Intensity : Untuk mengatur terang/gelapnya garis frekuensi
Focus : Untuk mengatur ketajaman garis frekuensi
Rotation : Untuk mengatur posisi kemiringan rotasi garis frekuensi
CAL : Frekuensi Sample yg dpt diukur utk mengkalibrasi Oscilloscope
Tombol di Vertikal Block :
Position : Untuk mengatur naik turunnya garis.
V. Mode : Untuk mengatur Channel yg dipakai
Ch1 : Menggunakan Input Channel1
Ch2 : menggunakan Input Channel 2
Alt : (Alternate) menggunakan bergantian Channel1 dan Channel 2
Chop : Menggunakan potongan dari Channel 1 dan Channel2
Add : Menggunakan penjumlahan dari Ch1 dan Ch2
Coupling : Dipilih sesuai input Channel yg digunakan,
Source : Sumber pengukuran bisa dari Channel1 atau Channel2
Slope : Normal digunakan yang +. Gunakan yang – untuk kebalikan gelombang.
AC-GND-DC : Pilih AC utk gelombang bolak-balik (peak to peak)
Pilih DC utk gelombang/tegangan searah DC
Pilih GND utk menonaktifkan gelombang mis:Utk menentukan posisi awal
VOLTS/DIV : Untuk menentukan skala vertikal tegangan dlm satu kotak/DIV Vertikal.
Tombol di Horizontal Block :
Position : Untuk mengatur posisi horizontal dari garis gelombang.
TIME/DIV : Untuk megatur skala frekuensi dlm satu kotak/DIV Horizontal.
X10 MAG : Untuk memperbesar/ Magnificient frekuensi menjadi 10x lipat.
Variable : Untuk mengatur kerapatan gelombang horizontal.
Trigger Level : Untuk mengatur agar frekuensi tepat terbaca.
Rumus frekuensi dengan Time(Waktu):
Frekuensi satuannya Hertz (Hz)
Time satuannya Detik/Second (s)
f = 1
T
T = 1
F
M = mega (1.000.000) 1 MHz >< 1 µS K = kilo (1000) 1 KHz >< 1
mS m = mili (1/1000) 1 Hz >< 1 S µ = mikro (1/1.000.000)
Setting tombol yang biasa saya gunakan untuk pengukuran frekuensi (Jadi
gak perlu milih2 lagi) : 26 Mhz dan 13 Mhz dan 38,4 Mhz Volts/Div :
20m Volt Time/Div : Mentok ke kanan 32 Khz Crystal (Sebelum masuk
CCONT) Volts/Div : 20mV atau 50mV Time/Div : 20 µS (Boleh juga 0,1mS /
50 µS / 10 µS) 32 Khz Sleep Clock (Sesudah masuk CCONT) Volts/Div : 1
Volts Time/Div : 20 µ S RX I/Q Volts/Div : 0,2 Volts Time/Div : 1 mS
SClk (Synthetizer Clock) 3V Volts/Div : 1 Volt Time/Div : 0,1mS atau
bebas. COBBA Clock Volts/Div : 0,5 Volts Time/Div : mentok ke kanan.
* Kalibrasi Oscilloscope Pada umumnya, tiap osiloskop sudah
dilengkapi sumber sinyal acuan untuk kalibrasi. Sebagai contoh,
osiloskop GW tipe tertentu mempunyai acuan gelombang persegi dengan
amplitudo 2V peak to peak dengan frekuensi 1 KHz. Misalkan kanal 1
yang akan dikalibrasi, maka BNC probe dihubungkan ke terminal masukan
kanal 1, seperti ditunjukkan pada gambar berikut:
Gambar di atas menggunakan probe 1X, dengan ujung probe yang merah
dihubungkan ke terminal kalibrasi. Capit buaya yang hitam tidak perlu
dihubungkan ke ground osiloskop karena sudah terhubung secara internal.
Pada layar osiloskop akan nampak gelombang persegi. Atur tombol kontrol
VOLTS/DIV dan TIME/DIV sampai diperoleh gambar yang jelas dengan
amplitudo 2 V peak to peak dengan frekuensi 1 KHz., seperti ditunjukkan
pada gambar berikut:
Gunakan tombol kontrol posisi vertikal V-pos untuk menggerakkan seluruh
gambar dalam arah vertikal dan tombol horizontal H-pos untuk
menggerakkan seluruh gambar dalam arah horizontal. Cara ini dilakukan
agar letak gambar mudah dilihat dan dibaca.
* Cara Kerja Osiloskop Analog
Pada saat osiloskop dihubungkan dengan sirkuit, sinyal tegangan bergerak
melalui probe ke sistem vertical. Pada gambar ditunjukkan diagram blok
sederhana suatu osiloskop analog.
Bergantung kepada pengaturan skala vertikal(volts/div), attenuator akan
memperkecil sinyal masukan sedangkan amplifier akan memperkuat sinyal
masukan.
Selanjutnya sinyal tersebut akan bergerak melalui keping pembelok
vertikal dalam CRT(Cathode Ray Tube). Tegangan yang diberikan pada pelat
tersebut akan mengakibatkan titik cahaya bergerak (berkas elektron
yang menumbuk fosfor dalam CRT akan menghasilkan pendaran cahaya).
Tegangan positif akan menyebabkan titik tersebut naik sedangkan
tegangan negatif akan menyebabkan titik tersebut turun.
Sinyal akan bergerak juga ke bagian sistem trigger untuk memulai sapuan
horizontal (horizontal sweep). Sapuan horizontal ini menyebabkan titik
cahaya bergerak melintasi layar. Jadi, jika sistem horizontal mendapat
trigger, titik cahaya melintasi layar dari kiri ke kanan dengan selang
waktu tertentu. Pada kecepatan tinggi titik tersebut dapat melintasi
layar hingga 500.000 kali per detik.
Secara bersamaan kerja sistem penyapu horizontal dan pembelok vertikal
akan menghasilkan pemetaan sinyal pada layar. Trigger diperlukan untuk
menstabilkan sinyal berulang. Untuk meyakinkan bahwa sapuan dimulai pada
titik yang sama dari sinyal berulang, hasilnya bisa tampak pada gambar
berikut
*Pada saat menggunakan osiloskop perlu diperhatikan beberapa hal sebagai berikut:
1. Tentukan skala sumbu Y (tegangan) dengan mengatur posisi tombol
Volt/Div pada posisi tertentu. Jika sinyal masukannya diperkirakan cukup
besar, gunakan skala Volt/Div yang besar. Jika sulit memperkirakan
besarnya tegangan masukan, gunakan attenuator 10 x (peredam sinyal) pada
probe atau skala Volt/Div dipasang pada posisi paling besar.
2. Tentukan skala Time/Div untuk mengatur tampilan frekuensi sinyal masukan.
3. Gunakan tombol Trigger atau hold-off untuk memperoleh sinyal keluaran yang stabil.
4. Gunakan tombol pengatur fokus jika gambarnya kurang fokus.
5. Gunakan tombol pengatur intensitas jika gambarnya sangat/kurang terang.
* Kinerja Osiloskop
Istilah yang dijelaskan pada bagian ini akan sering digunakan untuk membicarakan kehandalan sebuah osiloskop.
Lebar Pita (Bandwidth)
Spesifikasi bandwidth menunjukan daerah frekuensi yang dapat diukur oleh osiloskop dengan akurat.
Sejalan dengan peningkatan frekuensi, kapabilitas dari osiloskop untuk
mengukur secara akurat semakin menurun. Berdasarkan perjanjian,
bandwidth menunjukkan frekuensi ketika sinyal yang ditampilkan tereduksi
menjadi 70.7% dari sinyal sinus yang digunakan. (angka 70.7% mengacu
pada titik "-3 dB", sebuah istilah yang berdasar pada skala logaritmik).
* Rise Time
Rise Time adalah cara lain untuk menjelaskan daerah frekuensi yang
berguna dari sebuah osiloskop. Perubahan sinyal rendah ke tinggi yang
cepat, pada gelombang persegi, menunjukkan rise time yang tinggi. Rise
time menjadi sebuah pertimbangan penting ketika digunakan dalam
pengukuran pulsa dan sinyal tangga. Sebuah osiloskop hanya dapat
menampilkan pulsa yang risetime-nya lebih rendah dari rise time
osiloskop.
* Sensitivitas Vertikal
Sensitivitas vertikal menunjukan berapa kemampuan penguatan vertikal
untuk memperkuat sinyal lemah. Sensitivitas vertikal biasanya bersatuan
mVolt/div. Sinyal terlemah yang dapat ditangkap oleh osiloskop umumnya
adalah 2 mV/div.
Kecepatan Sapuan (Sweep Speed)
Untuk osiloskop analog, spesifikasi ini menunjukkan berapa cepat "trace"
dapat menyapu sepanjang layar, yang memudahkan untuk mendapatkan
detail dari sinyal. Kecepatan sapuan tercepat dari sebuah osiloskop
biasanya bersatuan nanodetik/div (ns/Div)
* Akurasi Gain
Akurasi penguatan menunjukkan seberapa teliti sistem vertikal melemahkan atau menguatkan sebuah sinyal.
* Basis Waktu dan Akurasi Horizontal
* Akurasi horizontal menunjukkan seberapa teliti sistem horizontal
menampilkan waktu dari sinyal. Biasanya hal ini dinyatakan dengan %
error.
* Sample Rate
Pada osiloskop digital, sampling rate menunjukkan laju pencuplikan yang
bisa ditangkap oleh ADC (tentu saja sama dengan osiloskop). Sample rate
maksimum ditunjukkan dengan megasample/detik (MS/s). Semakin cepat
osiloskop mencuplik sinyal, semakin akurat osiloskop menunjukkan detil
suatu sinyal yang cepat. Sample rate minimum juga penting jika
diperlukan untuk melihat perubahan kecil sinyal yang berlangsung dalam
waktu yang panjang.
Resolusi ADC (Resolusi Vertical)
Resolusi dari ADC (dalam bit) menunjukkan seberapa tepat ADC dapat mengubah tegangan masukan menjadi nilai digital.
Panjang Record
Panjang record dari sebuah osiloskop digital menunjukkan berapa banyak
gelombang dapat disimpan dalam memori. Tiap gelombang terdiri dari
sejumlah titik. Titik-titik ini dapat disimpan dalam sebuah record
gelombang. Panjang maksimum dari record bergantung dari banyaknya memori
dalam osiloskop. Karena osiloskop hanya dapat menyimpan dalam jumlah
yang terbatas ada pertimbangan antara detail record dan panjang record.
Karena itu kita dapat memperoleh sebuah gambaran detil untuk waktu yang
pendek atau gambaran yang kurang mendetil untuk jangka waktu yang
lebih lama. Pada Beberapa osiloskop kita dapat menambahkan memori untuk
meningkatkan panjang record.
* Panel Kendali
Perhatikan bagian depan. Bagian ini dibagi atas 3 bagian lagi yang
diberi nama Vertical, Horizontal, and Trigger. Osilosokop anda mungkin
mempunyai bagian-bagian tambahan lainnya tergantung pada model dan tipe
osiloskop (analog atau digital). Perhatikan bagian input. Bagian ini
adalah tempat anda memasukkan input. Kebanyakan osiloskop paling sedikit
mempunyai 2 input dan masing-masing input dapat menampilkan tampilan
gelombang di monitor peraga. Penggunaan secara bersamaan digunakan untuk
tujuan membandingkan.
9.JPG
Tampilan Depan Panel Kontrol
Pelajari kegunaan tombol-tombol berikut ini:
1. Tombol kontrol Volts/Div dengan pengatur tambahan untuk kalibrasi
2. Tombol Time/Div dengan pengatur tambahan untuk kalibrasi
3. Pastikan lokasi terminal untuk sinyal kalibrasi.
4. Tombol Trigger atau Hold Off
5. Tombol pengatur intensitas dan pengatur fokus.
6. Pengatur posisi gambar arah vertikal (V pos.) dan arah horizontal (H pos.)
7. Jika menggunakan osiloskop "Dual Trace", ada selektor kanal 1, 2, atau dual.
8. Pastikan lokasi terminal masukan kanal 1 dan kanal 2.
Ini semua adalah penjelasan umum dalam persiapan osiloskop. Jika anda
belum yakin bagaimana melakukan ini semua, kembali lihat manual yang
tersertakan ketika membeli osiloskop. Bagian kontrol menggambarkan
kontrol-kontrol secara detil.
* Pengendali Horizontal
Gunakan pengendali horizontal untuk mengatur posisi dan skala pada
bagian horizontal gelombang. Gambar berikut menunjukkan jenis panel
depan dan penala layar untuk mengatur bagian horizontal
Kontrol Horizontal
Tombol Posisi
Tombol posisi horizontal menggerakkan gambar gelombang dari sisi kiri ke kanan atau sebaliknya sesuai keinginan kita pada layar.
Tombol Time / Div ( time base control)
Tombol kontrol Time/div memungkinkan untuk mengatur skala horizontal.
Sebagai contoh, jika skala dipilih 1 ms, berarti tiap kotak(divisi)
menunjukkan 1 ms dan total layar menunjukkan 10 ms(10 kotak horisontal).
Jika satu gelombang terdiri dari 10 kotak, berarti periodanya adalah
10 ms atau frekuensi gelombang tersebut adalah 100 Hz. Mengubah
Time/div membuat kita bisa melihat interval sinyal lebih besar atau
lebih kecil dari semula, pada layar osiloskop, gambar gelombang akan
ditampilkan lebih rapat atau renggang.
Seringkali skala Time/Div dilengkapi dengan tombol variabel (fine
control) untuk mengatur skala horsiontal.. Tombol ini digunakan untuk
melakukan kalibrasi waktu..
* Pengendali Vertikal
Pengendali ini digunakan untuk merubah posisi dan skala gelombang secara
vertikal. Osiloskop memiliki pula pengendali untuk mengatur masukan
coupling dan kondisi sinyal lainnya yang dibahas pada bagian ini. Gambar
1 menunjukkan tampilan panel depan dan menu on-screen untuk kontrol
vertikal.
Kontrol Vertikal
Tombol Posisi
Tombol posisi vertikal digunakan untuk menggerakkan gambar gelombang pada layar ke arah atas atau ke bawah.
Tombol Volts / Div
Tombol Volts / div menagtur skala tampilan pada arah vertikal. Pemilihan
posisi. Misalkan tombol Volts/Div diputar pada posisi 5 Volt/Div, dan
layar monitor terbagi atas 8 kotak (divisi) arah vertikal. Berarti,
masing-masing divisi (kotak) akan menggambarkan ukuran tegangan 5 volt
dan seluruh layar dapat menampilkan 40 volt dari dasar sampai atas. Jika
tombol tersebut berada pada posisi 0.5 Volts/dDiv, maka layar dapat
menampilkan 4 volt dari bawah sampai atas, dan seterusnya. Tegangan
maksimum yang dapat ditampilkan pada layar adalah nilai skala yang
ditunjukkan pada tombol Volts/Div dikali dengan jumlah kotak vertikal.
Jika probe yg digunakan menggunakan faktor pelemahan 10x, maka tegangan
yang terbaca harus dikalikan 10.
Seringkali skala Volts/Div dilengkapi dengan tombol variabel penguatan(
variable gain) atau fine gain control. Tombol ini digunakan untuk
melakukan kalibrasi tegangan.
* Masukan Coupling
Coupling merupakan metoda yang digunakan untuk menghubungkan sinyal
elektrik dari suatu sirkuit ke sirkuit yang lain. Pada kasus ini,
masukan coupling merupakan penghubung dari sirkuit yang sedang di tes
dengan osiloskop. Coupling dapat ditentukan/diset ke DC, AC, atau
ground. Coupling AC menghalangi sinyal komponen DC sehingga terlihat
bentuk gelombang terpusat pada 0 volts. Gambar 2 mengilustrasikan
perbedaan ini. Coupling AC berguna ketika seluruh sinyal (arus bolak
balik dan searah) terlalu besar sehingga gambarnya tidak dapat
ditampilkan secara lengkap.
* Masukan coupling AC dan DC
Setting ground memutuskan hubungan sinyal masukan dari sistem vertikal,
sehingga 0 volts terlihat pada layar. Dengan masukan coupling tang
di-ground kan dan auto trigger mode (mode picu otomatis), terkihat garis
horisontal pada layar yang menggambarkan 0 volts. Pergantian dari DC
ke ground dan kemudian baik lagi berguna untuk pengukuran tingkat
sinyal tegangan.
* Filter Frekuensi
Kebanyakan osiloskop dilengkapi dengan rangkaian filter frekuensi.
Dengan membatasi frekuensi sinyal yang boleh masuk memungkinkan untuk
mengurangi noise/gangguan yang kadang-kadang muncul pada tampilan
gelombang, sehingga didapat tampilan sinyal yang lebih baik.
* Pembalik Polaritas
Kebanyakan osiloskop dilengkapi dengan pembalik polaritas sinyal, sehingga tampilan gambar berubah fasanya 180 derajad.
Alternate and Chop Display
Pada osiloskop analog, misal dua kanal, ada dua cara untuk menampilkan
sinyal gelombang secara bersamaan. Mode bolak-balik (alternate)
menggambar setiap kanal secara bergantian. Mode ini digunakan dengan
kecepatan sinyal dari medium sampai dengan kecepatan tinggi, ketika
skala times/div di set pada 0.5 ms atau lebih cepat.
Mode chop menggambar bagian-bagian kecil pada setiap sinyal ketika
terjadi pergantian kanal. Karena pergantian kanal terlalu cepat untuk
diperhatikan, sehingga bentuk gelombang tampak kontinu. Untuk mode ini
biasanya digunakan dengan sinyal lambat dengan kecepatan sweep 1ms per
bagian atau kurang. Gambar 3 menunjukkan perbedaan antara 2 mode
tersebut. Seringkali berguna untuk melihat sinyal dengan ke dua cara,
Untuk meyakinkan didapat pandangan terbaik, cobalah kedua cara tersebut.
* Panel Kendali Vertikal
* Pengukuran Fasa
Bagian pengontrol horizontal memiliki mode XY sehingga kita dapat
menampilkan sinyal input dibandingkan dengan dasar waktu pada sumbu
horizontal. (Pada beberapa osiloskop digital digunakan mode setting
tampilan).
Fase gelombang adalah lamanya waktu yang dilalui dimulai dari satu loop
hingga awal dari loop berikutnya. Diukur dalam derajat. Phase shift
menjelaskan perbedaan dalam pewaktuan antara dua atau lebih sinyal
periodik yang identik.
Salah satu cara mengukur beda fasa adalah menggunakan mode XY. Yaitu
dengan memplot satu sinyal pada bagian vertikal(sumbu Y) dan sinyal lain
pada sumbu horizontal(sumbu X). Metoda ini akan bekerja efektif jika
kedua sinyal yang digunakan adalah sinyal sinusiodal. Bentuk gelombang
yang dihasilkan adalah berupa gambar yang disebut pola Lissajous(diambil
dari nama seorang fisikawan asal Perancis Jules Antoine Lissajous dan
diucapkan Li-Sa-Zu). Dengan melihat bentuk pola Lissajous kita bisa
menentukan beda fasa antara dua sinyal. Juga dapat ditentukan
perbandinga frekuensi. Gambar di bawah ini memperlihatkan beberapa pola
Lissajous denagn perbandingan frekuensi dan beda fasa yang
berbeda-beda.
Pola Lissajous
Bagian ini telah menjelaskan dasar-dasar teknik pengukuran. Pengukuran
lainnya membutuhkan setting up osiloskop untuk mengukur komponen listrik
pada tahapan lebih mendalam,melihat noise pada sinyal, membaca sinyal
transien, dan masih banyak lagi aplikasi lainnya. Teknik pengukuran
yang akan kita gunakan bergantung jenis aplikasinya, tetapi kita telah
mempelajari cukup banyak untuk seorang pemula. Praktek menggunakan
osiloskop dan bacalah lebih banyak mengenai hal ini. Dengan terbiasa
maka pengoperasian dan pengukuran akan menjadi lebih mudah.
* Pengukuran Waktu dan Frekuensi
Ambil waktu pengukuran dengan menggunakan skala horizontal pada
osiloskop. Pengukuran waktu meliputi perioda, lebar pulsa(pulse width),
dan waktu dari pulsa. Frekuensi adalah bentuk resiprok dari perioda,
jadi dengan mengukur perioda frekuensi akan diketahui, yatu satu per
perioda. Seperti pada pengukuran tegangan, pengukuran waktu akan lebih
akurat saat meng-adjust porsi sinyal yang akan diukur untuk mengatasi
besarnya area pada layar. Ambil pengukuran waktu sepanjang garis
horizontal pada tengah-tengah layar, atur time/div untuk memperoleh
pengukuran yang lebih akurat.(Lihat gambar berikut .)
Pengukuran Waktu Pada Skala Tengah Horizontal dan contoh animasi penggunaan pengaturan waktu
Pada banyak aplikasi, informasi mendetil tentang pulsa sangatlah
penting. Pulsa bisa mengalami distorsi dan menyebabkan rangkaian digital
menjadi malfungsi, dan pewaktuan pulsa pada jalannya seringkali
signifikan.
Pengukuran standard pulsa adalah mengenai pulse width dan pulse rise
time. Rise time adalah waktu yang diperlukan pulsa saat bergerak dari
tegangan low ke high. Dengan aturan pengukuran rise time ini diukur dari
10% hingga 90% dari tegangan penuh pulsa. Hal ini mengeliminasi
ketidakteraturan pada sudut transisi pulsa. Hal ini juga menjelaskan
kenapa pada kebanyakan osiloskop memiliki 10% hingga 90% penandaan pada
layarnya. Lebar pulsa adalah lamanya waktu yang diperlukan saat
bergerak dari low ke high dan kembali ke low lagi. Dengan aturan lebar
pulsa terukur adalah 50% tegangan penuh. Untuk lebih jelas anda lihat
gambar berikut :
Titik Pengukuran Waktu dan Pulsa
Pengukuran pulsa seringkali memerlukan penalaan yang baik yaitu
trigerring. Untuk lebih meguasai pengukuran pulsa, anda harus
mempelajari bagaimana menggunakan trigger hold off untuk mengeset
osiloskop digital intuk menangkap pretrigger data, sebagaimana yang
telah dijelaskan sebelumnya pada sesi pembahasan kontrol.
* Sumber Sinyal
Makna umum dari sebuah pola yang berulang terhadap waktu disebut
gelombang, termasuk didalamnya gelombang suara, otak maupun listrik.
Satu siklus dari sebuah gelombang merupakan bagian dari gelombang yang
berulang.
Sebuah bentuk gelombang (waveform) merupakan representasi grafik dari
sebuah gelombang. Bentuk gelombang tegangan menunjukkan waktu pada sumbu
horizontal dan amplitudo tegangan pada sumbu vertikal.
Sebuah bentuk gelombang dapat menunjukkan berbagai hal tentang sebuah
sinyal. Naik-turunnya gelombang menunjukkan perubahan tegangan. Sebuah
garis yang datar menunjukkan bahwa tidak terjadi perubahan pada jangka
waktu tersebut. Garis diagonal menunjukkan perubahan linear - meningkat
atau menurunnya tegangan dengan laju tetap. Sudut yang tajam
menunjukkan perubahan mendadak.
Sumber gelombang listrik (sinyal listrik) dapat berasal dari berbagai
macam, seperti: dari signal generator (pembangkit sinyal), jala-jala
listrik, rangkaian elektronik, dll. Beberapa diantaranya ditunjukkan
pada gambar di bawah.
Gambar signal generator dengan bentuk-bentuk gelombang keluarannya
Sumber signal elektronik sehari2
* Probe
Sekarang anda siap menghubungkan probe ke osiloskop. Probe adalah kabel
penghubung yang ujungnya diberi penjepit, dengan penghantar
kerkualitas, dapat meredam sinyal-sinyal gangguan, seperti sinyal radio
atau noise yang kuat.
Probe didesain untuk tidak mempengaruhi rangkain yang diukur. Hambatan
keluaran dari osiloskop mungkin saja membebani rangkaian yang akan
diukur. Untuk meminimumkan pengaruh pembebanan, anda mungkin perlu
menggunakan probe peredam (pasif) 10 X
Osiloskop anda mungkin dilengkapi dengan probe pasif sebagai standar
pelengkap. Probe pasif berguna sebagai alat untuk tujuan pengujian
tertentu dan troubleshooting. Untuk pengukuran atau pengujian yang
spesifik, beberap probe yang lain mungkin diperlukan. Misalnya probe
aktif dan probe arus.
Penjelasan selanjutnya, akan lebih menekankan pada pemakaian probe pasif
karena tipe probe ini mempunyai fleksibiltas dalam penggunaannya.
Menggunakan Probe Pasif
Kebanyakan probe pasif mempunyai beberapa faktor derajat peredaman,
seperti 10 X, 100 X dll. Menurut kesepakatan, tulisan 10 X berarti
faktor redamannya 10 kali. Amplitudo tegangan sinyal yang masuk akan
diredam 10 kali, Besarnya tegangan yang terukur oleh osiloskop harus
dikalikan 10. Bedakan dengan tulisan X 10, berarti faktor penguatannya
10 kali. Amplitudo tegangan sinyal yang masuk akan diperbesar 10 kali.
Besarnya tegangan yang terukur oleh osiloskop harus dibagi 10.
Probe peredaman 10 X meminimumkan pembebanan pada rangkaian dan ini
adalah tujuan utama daripada probe pasif. Pembebanan pada rangkaian
lebih terlihat pada frekuensi tinggi, maka pastikan untuk menggunakan
probe ini ketika pengukuran di atas 5 KHz. Probe peredaman 10X
meningkatkan keakuratan pengukuran, tetapi di lain pihak mengurangi
amplitudo sinyal sebesar faktor 10.
Karena meredam sinyal, probe peredaman 10 X membuat masalah ketika
menampilkan sinyal dibawah 10 milivolt. Probe 1X berarti tidak ada
peredaman sinyalGunakan probe peredaman 10 X sebagai probe standar anda,
tetapi tetap menggunakan probe 1X untuk pengukuran sinyal-sinyal yang
lemah. Beberapa probe mempunyai bagian khusus yang dapat
mengganti-ganti antara probe 1x dan probe 10 X. Jika probe anda
mempunyai bagian ini, pastikan anda melakukan seting yang benar sebelum
pengukuran.
Gambar berikut memperlihatkan diagram sederhana pada bagian kerja
internal dari probe. Hambatan masukan osiloskop 1 MOhm diseri dengan
hambatan 9 Mohm, sehingga tegangan masukan pada terminal osiloskop
menjadi 1/10 kali tegangan yang diukur.
Probe 10 X dan osiloskop membentuk rangkaian pembagi tegangan
Sedangkan di bawah ini ditunjukkan probe dengan tipikal pasif dan beberapa aksesoris yang digunakan bersama probe
Probe pasif dan asesoris.
Dimana Memasangkan Pencapit Ground
Ada dua terminal penghubung pada probe, yaitu ujung probe dan kabel
ground yang biasanya dipasangi capit buaya. Pada prakteknya capit buaya
tersebut dihubungkan dengan bagian ground pada rangkaian, seperti
chasis logam, dan sentuhkan ujung probe pada titik yang dites pada
rangkaian.
Sumber : http://surya-acc.blogspot.com/2011/07/cara-menggunakan-oscilloscope-tekhnik.html